A Degree Sequence Strengthening of the Vertex Degree Threshold for a Perfect Matching in 3-Uniform Hypergraphs

نویسندگان

چکیده

The study of asymptotic minimum degree thresholds that force matchings and tilings in hypergraphs is a lively area research combinatorics. A key breakthrough this was result H\`{a}n, Person Schacht who proved the vertex threshold for perfect matching an $n$-vertex $3$-graph $\left(\frac{5}{9}+o(1)\right)\binom{n}{2}$. In paper we improve on result, giving family sequence results, all which imply Schacht, additionally allow one third vertices to have $\frac{1}{9}\binom{n}{2}$ below threshold. Furthermore, show is, some sense, tight.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perfect matching in 3 uniform hypergraphs with large vertex degree

A perfect matching in a 3-uniform hypergraph on n = 3k vertices is a subset of n3 disjoint edges. We prove that if H is a 3-uniform hypergraph on n = 3k vertices such that every vertex belongs to at least ( n−1 2 ) − ( 2n/3 2 ) + 1 edges then H contains a perfect matching. We give a construction to show that this result is best possible.

متن کامل

Vertex Degree Sums for Perfect Matchings in 3-uniform Hypergraphs

We determine the minimum degree sum of two adjacent vertices that ensures a perfect matching in a 3-graph without isolated vertex. More precisely, suppose that H is a 3-uniform hypergraph whose order n is sufficiently large and divisible by 3. If H contains no isolated vertex and deg(u)+deg(v) > 2 3 n2− 8 3 n+2 for any two vertices u and v that are contained in some edge of H, then H contains a...

متن کامل

Minimum vertex degree threshold for loose Hamilton cycles in 3-uniform hypergraphs

We show that for sufficiently large n, every 3-uniform hypergraph on n vertices with minimum vertex degree at least (n−1 2 ) − (b 3 4 nc 2 ) + c, where c = 2 if n ∈ 4N and c = 1 if n ∈ 2N\4N, contains a loose Hamilton cycle. This degree condition is best possible and improves on the work of Buß, Hàn and Schacht who proved the corresponding asymptotical result.

متن کامل

Exact minimum degree thresholds for perfect matchings in uniform hypergraphs

Article history: Received 19 August 2011 Available online xxxx Given positive integers k and where 4 divides k and k/2 k−1, we give a minimum -degree condition that ensures a perfect matching in a k-uniform hypergraph. This condition is best possible and improves on work of Pikhurko who gave an asymptotically exact result. Our approach makes use of the absorbing method, as well as the hypergrap...

متن کامل

On Perfect Matchings in Uniform Hypergraphs with Large Minimum Vertex Degree

We study sufficient l-degree (1 ≤ l < k) conditions for the appearance of perfect and nearly perfect matchings in k-uniform hypergraphs. In particular, we obtain a minimum vertex degree condition (l = 1) for 3-uniform hypergraphs, which is approximately tight, by showing that every 3-uniform hypergraph on n vertices with minimum vertex degree at least (5/9+o(1)) ` n 2 ́ contains a perfect matchi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Discrete Mathematics

سال: 2022

ISSN: ['1095-7146', '0895-4801']

DOI: https://doi.org/10.1137/20m1364825